
Jonathan Bell, John Boyland, Mitch Wand
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500
Software Engineering
Lesson 12.4: Measuring Engineering Productivity

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Apply a goal/signal/metrics framework in software engineering as a feedback
loop to improve processes

McNamara Fallacy
Reminder (See Lesson 12.2)

• Measure whatever can be easily measured

• Disregard that which cannot be measured easily

• Presume that which cannot be measured easily
is not important

• Presume that which cannot be measured easily
does not exist

https://codingsans.com/blog/team-productivity-improve-developers-productivity
https://intuitusadvisory.com/insights/7-killers-of-software-development-productivity-and-how-they-impact-value

https://codingsans.com/blog/team-productivity-improve-developers-productivity
https://intuitusadvisory.com/insights/7-killers-of-software-development-productivity-and-how-they-impact-value

Metrics and Productivity
Applying metrics, sanely

• Consider multiple quantitative and qualitative metrics

• Use metrics to evaluate performance in aggregate, and not for an individual’s
performance review

Measuring and Improving Engineering Productivity
Example: Code Review Processes

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018

You need to have 100’s of successful
changes integrated before you can be a

readability reviewer
Is this hazing?

Do linters replace this?

How do we measure process efficiency?
Goal/Signal/Metric framework

• Goal: desired end result

• Signal: How we’re likely to know if we’ve achieved the end result, may not be
measurable

• Metric: A proxy for a signal, which can actually be measured

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

From Quality Goals to Metrics
McCall Quality Model

“A Framework for the Measurement of Software Quality”, Cavano & McCall

https://dl.acm.org/doi/10.1145/800283.811113

From Quality Goals to Metrics
McCall Quality Model

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

Engineering Productivity: A Broad Goal
QUANTS components

• Quality of the code (Is it tested? Is it maintainable?)

• Attention from engineers (Does the process distract engineers?)

• Intellectual complexity (How does the complexity of the process relate to the
complexity of the task?)

• Tempo and velocity (How quickly can engineers accomplish their tasks?)

• Satisfaction (How happy are engineers?)

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

From Goals to Signals and Metrics
Readability Review

• Goal: “Engineers write higher-quality code as a result of the readability process.”

• Signal: “Engineers who have been granted readability judge their code to be of higher
quality than engineers who have not been granted readability.”

• Metric: “Quarterly Survey: Proportion of engineers who report being satisfied with the
quality of their own code”

• Signal: “The readability process has a positive impact on code quality.”

• Metric: “Readability Survey: Proportion of engineers reporting that readability reviews
have no impact or negative impact on code quality”

• Metric: “Readability Survey: Proportion of engineers reporting that participating in the
readability process has improved code quality for their team”

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity

A closing word on productivity
“On the cruelty of really teaching computing science”

From there it is only a small step to measuring ‘programmer
productivity’ in terms of ‘number of lines of code produced
per month.’ This is a very costly measuring unit because it
encourages the writing of insipid code, but today I am less
interested in how foolish a unit it is from even a pure
business point of view. My point today is that, if we wish to
count lines of code, we should not regard them as ‘lines
produced’ but as ‘lines spent’: the current conventional
wisdom is so foolish as to book that count on the wrong side
of the ledger.
- Edsger W. Dijkstra

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html

This work is licensed under a Creative Commons
Attribution-ShareAlike license

• This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-sa/4.0/

• You are free to:
• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material
• for any purpose, even commercially.

• Under the following terms:
• Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.

You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use.

• ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/

