
Jonathan Bell, John Boyland, Mitch Wand 
Khoury College of Computer Sciences 
© 2021, released under CC BY-SA

CS 4530 & CS 5500 
Software Engineering
Lesson 12.4: Measuring Engineering Productivity

http://creativecommons.org/licenses/by-sa/4.0/


Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Apply a goal/signal/metrics framework in software engineering as a feedback 
loop to improve processes



McNamara Fallacy
Reminder (See Lesson 12.2)

• Measure whatever can be easily measured


• Disregard that which cannot be measured easily


• Presume that which cannot be measured easily 
is not important


• Presume that which cannot be measured easily 
does not exist



https://codingsans.com/blog/team-productivity-improve-developers-productivity
https://intuitusadvisory.com/insights/7-killers-of-software-development-productivity-and-how-they-impact-value 

https://codingsans.com/blog/team-productivity-improve-developers-productivity
https://intuitusadvisory.com/insights/7-killers-of-software-development-productivity-and-how-they-impact-value




Metrics and Productivity
Applying metrics, sanely

• Consider multiple quantitative and qualitative metrics


• Use metrics to evaluate performance in aggregate, and not for an individual’s 
performance review



Measuring and Improving Engineering Productivity
Example: Code Review Processes

“Modern Code Review: A Case Study at Google”, Sadowski et al, ICSE 2018 

You need to have 100’s of successful 
changes integrated before you can be a 

readability reviewer
Is this hazing?

Do linters replace this?



How do we measure process efficiency?
Goal/Signal/Metric framework

• Goal: desired end result


• Signal: How we’re likely to know if we’ve achieved the end result, may not be 
measurable


• Metric: A proxy for a signal, which can actually be measured

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


From Quality Goals to Metrics
McCall Quality Model

“A Framework for the Measurement of Software Quality”, Cavano & McCall

https://dl.acm.org/doi/10.1145/800283.811113


From Quality Goals to Metrics
McCall Quality Model

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time 
Isolate/fix time 
Fault rate 

Statement coverage 
Test plan completeness 

Resource prediction 
Effort expenditure 

Change effort 
Change size 
Change rate



Engineering Productivity: A Broad Goal
QUANTS components

• Quality of the code (Is it tested? Is it maintainable?)


• Attention from engineers (Does the process distract engineers?)


• Intellectual complexity (How does the complexity of the process relate to the 
complexity of the task?)


• Tempo and velocity (How quickly can engineers accomplish their tasks?)


• Satisfaction (How happy are engineers?)

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


From Goals to Signals and Metrics
Readability Review

• Goal: “Engineers write higher-quality code as a result of the readability process.”


• Signal: “Engineers who have been granted readability judge their code to be of higher 
quality than engineers who have not been granted readability.”


• Metric: “Quarterly Survey: Proportion of engineers who report being satisfied with the 
quality of their own code”


• Signal: “The readability process has a positive impact on code quality.”


• Metric: “Readability Survey: Proportion of engineers reporting that readability reviews 
have no impact or negative impact on code quality”


• Metric: “Readability Survey: Proportion of engineers reporting that participating in the 
readability process has improved code quality for their team”

[Software Engineering @ Google Ch 7]

https://learning.oreilly.com/library/view/software-engineering-at/9781492082781/ch07.html#measuring_engineering_productivity


A closing word on productivity
“On the cruelty of really teaching computing science”

From there it is only a small step to measuring ‘programmer 
productivity’ in terms of ‘number of lines of code produced 
per month.’ This is a very costly measuring unit because it 
encourages the writing of insipid code, but today I am less 
interested in how foolish a unit it is from even a pure 
business point of view. My point today is that, if we wish to 
count lines of code, we should not regard them as ‘lines 
produced’ but as ‘lines spent’: the current conventional 
wisdom is so foolish as to book that count on the wrong side 
of the ledger.
- Edsger W. Dijkstra

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html
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